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Annotation

The development of various fields of engineering and technology is inextricably linked with
the creation of new polymeric and composite materials with predetermined various physical
and mechanical properties. The paper considers linear natural vibrations of a viscoelastic
three-layer shallow spherical shell with the most common types of boundary conditions
(sliding pinching, free support, etc.). The problem is reduced to the consideration of a single-
layer spherical shell. The aim of the work is to formulate and solve the problem of natural
oscillations of viscoelastic multilayer spherical shells. Based on the methods of differential
equations in partial derivatives, a frequency equation with complex output parameters is
obtained. The problem of natural oscillations of viscoelastic multilayer spherical shells is
posed and solved. An equation of resonant frequencies is obtained, which makes it possible
to implement the construction of eigenmodes and numerical results.
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1. Introduction
The development of various fields of technology and industry is inextricably linked with the
creation of new polymer and composite materials with various predetermined physical and

mechanical properties [1,2]. The appearance of such materials is widely used in new
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technology and contributes to the creation of new structures operating under non-standard
conditions, such as random non-stationary effects, pressure of a moving load, shock waves
and currents, and seismic effects [3,4]. Therefore, taking into account the dependence of the
mechanical properties of deformable media on the types of loading becomes more and more
necessary, ignoring which can lead to loss of bearing capacity and destruction of the structure
during operation [5,6]. As a result, there is a great need to create refined mathematical
models, development of new methods solutions and calculation algorithms for theoretical
research behavior of materials during operation under working conditions. The creation of
software systems makes it possible to optimize and control the operation of structures during
intensive non-stationary external loads [7,8]. In the absence of external loads, natural
oscillations are considered [9].

2. Methods

2.1. Statements of the problem and basic relations

When obtaining a three-layer shell, it is assumed that the shells are considered asymmetric
in thickness, the materials of the layers are isotropic, and their Poisson ratios are equal to
each other.

D1239(t) = Do1,02,03 [(I)(t) - f; Ra1,2,3(t— T)q)(t)dT] ;Bd(t) = Byy [(I)(t) -

t
Jo Rt = Db(Dd] . (1)
We take the integral terms in (1) small, then the integrands ¢ (t) = P(t)e 'Rt where Ji(t)-

slowly changing function of time, wg- real constant. Next, applying the freezing procedure
[10], we replace the integral relations with approximate ones of the form

Dy [f] = Doi[1 — fooo R 4, (T) cos wg tdT —
i fooo R4« (T) sin wg tdt]f,
B.[f] = Bo[1 — fooo Ry, (T) cos wg tdt — ifooo Ry« (T) sin wg tdt]f, (2)
where f(t)— arbitrary function of time. Then the integro-differential equations take the
following form [11]:
Bi(1-v?)
] R
V2[(BV? — 2Gh)g — D;37?w] = 0,72 [2E2292 — 2Gh| y = o, 3)

V2V2y — Viw =0,
_ i 1
D,V2V2w — D;V2V2¢ + EVZLD + TV?w — A?w = 0.

where Y, w - complex functions of forces and deflection; ¢,x - complex functions of
transverse shear; A> = mw?; w = wg + iw;- complex frequency, m- mass of all layers per
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unit area, w - shell displacement vector, Ay, lox - Instantaneous moduli of elasticity, ¢, =
[KEo/2p0(1 + vo)]/2. The three-parameter relaxation kernel of Koltunov-Rzhanitsyn was
used in the calculations:Ry (t) = A, e Prt/t1=%,
Under boundary conditions y = Z—); = 0 the second equation (3) for the function X, which

characterizes the vortex deformation of the edge effect due to transverse shear, when
determining the critical loads and frequencies of free oscillations, turns out to be unrelated
to the other equations of the written system [6].

Because of this, for these problems, the values of this function can be set equal to zero, that
is x = 0 [11]. Under boundary conditions for x, different from those written out above, the
influence of this function on the values of critical loads or oscillation frequencies will affect
only when the boundary conditions for the moments are met.

Since the most essential boundary conditions for shells are the conditions imposed on the
functions w, @uy, then it seems natural in the first approximation the assumption that in
general y = 0 and the main system (3) will then consist of three equations for the functions
U, o, w.

Let the following conditions be satisfied on the contour for the functions

() = 0,22 = 0,w(s) = 0. )

Integrating equation (1), we obtain:

vy = B0y, )

Due to the boundary conditions (4) I'; =0.

Substituting (5) into (3), as well as integrating the first equation, we obtain the system of the
following equations:

D,V2¢p — D3V?w — 2Ghe =0

D,V2V?w — D3 V2V2 @ + TV?w — A2 w = 0,

2> w = (A? — B;(1 —v?):R?). (6)

If the boundary conditions for the functions coincide in form (free support, sliding pinching,
a combination of free bearing and pinching, etc.), then the solution to system (6) can be
sought in the form ¢ = Aw.

Taking this into account, equations (6) can be written as

VZw — uw = 0, V2V2w + T, V2w — A2w = 0, (7)
where
u= A= 2Gh: (AD; — D3),A? = A%: (D, — AD3), T, =T:(D, —AD;)
(8)
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Let us now require that the solution of the second equation in (7) includes the solution of the

first one.

We will look for a solution to the second equation (7) in the form:
V2w + 8w = 0. (9)

This will give us two equations:

Viw + 6w = 0,V?w + §,w = 0. (10)
The condition for the compatibility of solutions to equations (7) is given by the equalities
p=—06, or u=—04,, (11)

which serve to determine an arbitrary parameter A.

Thus, when condition (11) is satisfied, the solution of the problem of free oscillations of an
arbitrary, in terms of a flat spherical shell and a flat plate, will be reduced to solving the well-
studied equation for a single-layer spherical shell

V272w + T, V2w — 23w = 0. (12)

When solving specific problems using the proposed method, a difficulty may arise associated
with solving the cubic equation for the parameter A, to which condition (11) leads. This
difficulty is not fundamental and can be circumvented by the method described below.

As an example, consider the problem of axisymmetric vibrations of gently sloping spherical
domes bounded in plan by a circular region.

The corresponding equation (12) at T;=0 in polar coordinates will be

Viviw — 3w = 0. (13)
0y =MA,0, = =14
Let's consider a sliding pinch. The boundary conditions have the form:
=, =2 _, =0 nupur=a (14)
dr dr dr

where a -is the radius of the circle bounding the spherical shell.

3. Results and analysis

When the boundary conditions for w are satisfied, due to the relation ¢ = Aw the conditions
for ¢. Function condition 1, which takes into account the level of stretching energy, strictly
speaking, will not hold. This circumstance, however, will not significantly affect the results,
since for a sphere the fulfillment of the boundary conditions is reflected only at the level of
the bending energy.

For boundary conditions (14), the smallest oscillation frequency parameter , determined by
equation (13), is equal to

M =P, p

_10.54

a?

(15)
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Using (8), (11), (13) and (15), we find the parameter 2GhA: (AD; — D3;) = —B,A =
D;B: (D,f + 2Gh).
respectively, the oscillation frequency parameter

A% = B;(1 —v?):R? + B2[B(D,D, — D2) + 2GhD,]: (D;B + 2Gh).
This formula exactly coincides with the similar formula in [2]. The calculation results are
shown in Fig.1.
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Fig.1. Changing the natural frequencies of the three modes depending on the frequency.

It can be seen from the figures that as the dimensionless parameter R/h increases, the
frequency approaches the asymptotics.

4. Conclusion

In conclusion, we note that the problem of natural oscillations of viscoelastic multilayer
spherical shells has been posed and solved. An equation of resonant frequencies is obtained,
which makes it possible to implement the construction of eigenforms. Note that, without any
changes, the method developed here can be extended to the solution of linear problems of
the strength of a shallow spherical shell.
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