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Annotation 

The development of various fields of engineering and technology is inextricably linked with 

the creation of new polymeric and composite materials with predetermined various physical 

and mechanical properties. The paper considers linear natural vibrations of a viscoelastic 

three-layer shallow spherical shell with the most common types of boundary conditions 

(sliding pinching, free support, etc.). The problem is reduced to the consideration of a single-

layer spherical shell. The aim of the work is to formulate and solve the problem of natural 

oscillations of viscoelastic multilayer spherical shells. Based on the methods of differential 

equations in partial derivatives, a frequency equation with complex output parameters is 

obtained. The problem of natural oscillations of viscoelastic multilayer spherical shells is 

posed and solved. An equation of resonant frequencies is obtained, which makes it possible 

to implement the construction of eigenmodes and numerical results. 
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1. Introduction 

 The development of various fields of technology and industry is inextricably linked with the 

creation of new polymer and composite materials with various predetermined physical and 

mechanical properties [1,2]. The appearance of such materials is widely used in new 
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technology and contributes to the creation of new structures operating under non-standard 

conditions, such as random non-stationary effects, pressure of a moving load, shock waves 

and currents, and seismic effects [3,4]. Therefore, taking into account the dependence of the 

mechanical properties of deformable media on the types of loading becomes more and more 

necessary, ignoring which can lead to loss of bearing capacity and destruction of the structure 

during operation [5,6]. As a result, there is a great need to create refined mathematical 

models, development of new methods solutions and calculation algorithms for theoretical 

research behavior of materials during operation under working conditions. The creation of 

software systems makes it possible to optimize and control the operation of structures during 

intensive non-stationary external loads [7,8]. In the absence of external loads, natural 

oscillations are considered [9]. 

 

2. Methods 

2.1. Statements of the problem and basic relations 

When obtaining a three-layer shell, it is assumed that the shells are considered asymmetric 

in thickness, the materials of the layers are isotropic, and their Poisson ratios are equal to 

each other. 

     

D̃1,2,3ϕ(t) = D01,02,03 [ϕ(t) − ∫ Rd1,2,3(t − τ)ϕ(t)dτ
t

0
] ; B̃ϕ(t) = B01 [ϕ(t) −

∫ Rb(t − τ)ϕ(t)dτ
t

0
] . (1)

 
We take the integral terms in (1) small, then the integrands ϕ(t) = ψ(t)e−iωRt, where ψ(t)- 

slowly changing function of time, ωR- real constant. Next, applying the freezing procedure 

[10], we replace the integral relations with approximate ones of the form 

                  D̄к[f] = D0к[1 − ∫ Rdк(τ) cos ωR τdτ
∞

0
−

i ∫ Rdк(τ) sin ωR τdτ
∞

0
]f,                               

B̄к[f] = B0к[1 − ∫ Rbк(τ) cos ωR τdτ
∞

0
− i ∫ Rbк(τ) sin ωR τdτ

∞

0
]f,                              (2)  

where f(t)– arbitrary function of time. Then the integro-differential equations take the 

following form [11]: 

∇2∇2ψ −
B̄1(1 − ν2)

R
∇2w = 0, 

∇2[(D̄∇2 − 2Ḡh)φ − D̄3∇2w] = 0, ∇2 [
D̄1(1−ν2)

2
∇2 − 2Ḡh] χ = 0,                                   (3) 

D̄2∇2∇2w − D̄3∇2∇2φ +
1

R
∇2ψ + T∇2w − Λ2w = 0. 

where ψ, w  - complex functions of forces and deflection; φ, χ  - complex functions of 

transverse shear; Λ2 = mω2; ω = ωR + iωI- complex frequency, m-  mass of all layers per 
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unit area, 𝐰 - shell displacement vector, λ0к, μ0к - instantaneous moduli of elasticity, с20 =

[kE0/2ρ0(1 + ν0)]1/2. The three-parameter relaxation kernel of Koltunov-Rzhanitsyn was 

used in the calculations:Rk(t) = Ake−βkt/t1−αk. 

Under boundary conditions χ =
∂χ

∂n
= 0 the second equation (3) for the function X, which 

characterizes the vortex deformation of the edge effect due to transverse shear, when 

determining the critical loads and frequencies of free oscillations, turns out to be unrelated 

to the other equations of the written system [6]. 

Because of this, for these problems, the values of this function can be set equal to zero, that 

is χ = 0 [11]. Under boundary conditions for χ, different from those written out above, the 

influence of this function on the values of critical loads or oscillation frequencies will affect 

only when the boundary conditions for the moments are met. 

Since the most essential boundary conditions for shells are the conditions imposed on the 

functions w, φuψ, then it seems natural in the first approximation the assumption that in 

general χ = 0 and the main system (3) will then consist of three equations for the functions 

ψ, φ, w. 

Let the following conditions be satisfied on the contour for the functions                  

      ψ(s) = 0,
∂2ψ

∂n2
= 0, w(s) = 0 .                                                                        (4) 

Integrating equation (1), we obtain: 

                            ∇2ψ =
B̄1(1−ν2)

R
w + Γ1.                                                                                    (5) 

Due to the boundary conditions (4)  Г1 = 0. 

Substituting (5) into (3), as well as integrating the first equation, we obtain the system of the 

following equations: 

D1∇2φ − D3∇2w − 2Ghφ = 0  , 

D2∇2∇2w − D3∇2∇2φ + T∇2w − λ2 w = 0, 

λ2 w = (Λ2 − B1(1 − ν2): R2).                                                           (6) 

If the boundary conditions for the functions coincide in form (free support, sliding pinching, 

a combination of free bearing and pinching, etc.), then the solution to system (6) can be 

sought in the form φ = Aw.  

Taking this into account, equations (6) can be written as                       

     ∇2w − μw = 0, ∇2∇2w + T1∇2w − λ1
2w = 0,                                                 (7) 

where 

                        μ = A ∗ 2Gh: (AD1 − D3), λ1
2 = λ2: (D2 − AD3),     T1 = T: (D2 − AD3)                               

(8) 
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Let us now require that the solution of the second equation in (7) includes the solution of the 

first one. 

We will look for a solution to the second equation (7) in the form:                                 

 ∇2w + δw = 0.  (9) 

This will give us two equations: 

                               𝛻2𝑤 + 𝛿1𝑤 = 0, 𝛻2𝑤 + 𝛿2𝑤 = 0.                                                     (10) 

The condition for the compatibility of solutions to equations (7) is given by the equalities                           

   𝜇 = −𝛿1  𝑜𝑟  𝜇 = −𝛿2,                                                                 (11) 

which serve to determine an arbitrary parameter A. 

Thus, when condition (11) is satisfied, the solution of the problem of free oscillations of an 

arbitrary, in terms of a flat spherical shell and a flat plate, will be reduced to solving the well-

studied equation for a single-layer spherical shell                         

         𝛻2𝛻2𝑤 + 𝑇1𝛻2𝑤 − 𝜆1
2𝑤 = 0.                                                                             (12) 

When solving specific problems using the proposed method, a difficulty may arise associated 

with solving the cubic equation for the parameter A, to which condition (11) leads. This 

difficulty is not fundamental and can be circumvented by the method described below. 

As an example, consider the problem of axisymmetric vibrations of gently sloping spherical 

domes bounded in plan by a circular region. 

The corresponding equation (12) at T1=0 in polar coordinates will be                      

            𝛻2𝛻2𝑤 − 𝜆1
2𝑤 = 0.                                                                                (13) 

𝜎1 = 𝜆1, 𝜎2 = −𝜆1 

Let's consider a sliding pinch. The boundary conditions have the form:              

   𝑤 =
𝑑𝑤

𝑑𝑟
= 0,                𝜑 =

𝑑𝜑

𝑑𝑟
= 0,                 

𝑑𝜓

𝑑𝑟
= 0       при𝑟 = 𝑎                        (14) 

  where 𝑎 -is the radius of the circle bounding the spherical shell. 

 

3. Results and analysis 

When the boundary conditions for w are satisfied, due to the relation 𝜑 = 𝐴𝑤 the conditions 

for 𝜑. Function condition 𝜓, which takes into account the level of stretching energy, strictly 

speaking, will not hold. This circumstance, however, will not significantly affect the results, 

since for a sphere the fulfillment of the boundary conditions is reflected only at the level of 

the bending energy. 

For boundary conditions (14), the smallest oscillation frequency parameter , determined by 

equation (13), is equal to 

                       𝜆1 = 𝛽,                         𝛽 =
10.54

𝑎2
.                                                                  (15) 
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Using (8), (11), (13) and (15), we find the parameter        2𝐺ℎ𝐴: (𝐴𝐷1 − 𝐷3) = −𝛽, 𝐴 =

𝐷3𝛽: (𝐷1𝛽 + 2𝐺ℎ). 

respectively, the oscillation frequency parameter                        

𝛬2 = 𝐵1(1 − 𝜈2): 𝑅2 + 𝛽2[𝛽(𝐷1𝐷2 − 𝐷3
2) + 2𝐺ℎ𝐷2]: (𝐷1𝛽 + 2𝐺ℎ). 

This formula exactly coincides with the similar formula in [2]. The calculation results are 

shown in Fig.1. 

 
Fig.1. Changing the natural frequencies of the three modes depending on the frequency. 

      

It can be seen from the figures that as the dimensionless parameter R/h increases, the 

frequency approaches the asymptotics. 

 

4. Conclusion 

In conclusion, we note that the problem of natural oscillations of viscoelastic multilayer 

spherical shells has been posed and solved. An equation of resonant frequencies is obtained, 

which makes it possible to implement the construction of eigenforms. Note that, without any 

changes, the method developed here can be extended to the solution of linear problems of 

the strength of a shallow spherical shell. 
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